
UTC Content Creation Procedures January 2003 60

UTC Content Creation Procedures 60

SMOKE EFFECTS

Introduction

Trainz version 1.3 (Service Pack 3) gives you
the ability to add customizable smoke, steam,
vapor and similar effects to your custom
trains and scenery objects. For simplicity, this
document will refer to this set of effects as
simply smoke effects.

It is assumed the reader is already familiar
with creating and exporting models from either
3D Studio Max or GMax.

Method

Smoke effects are added to custom trains and
scenery objects in two steps:

1. Add attachment points to the original
model.

2. Add smoke tags to the object’s
confi g.txt fi le.

Adding Attachment Points

Attachment points are added to the original
model using 3D Studio Max or GMax wherever
a smoke effect is desired. See fi gures 1 and
2 below to locate the Insert Point tool. After a
point is inserted, it must be given a name with
a prefi x of ‘a.’ to identify it as an attachment
point, e.g. a.smoke, a.steam, a.safety, a.mist,
etc. The attachment point should also be
rotated so that its Y axis is pointing in the
direction that smoke particles will be emitted.
(Ensure Axis Tripod is checked to see the
point’s orientation.) When fi nished, save and
export the model as per normal.

CHAPTER 5 - PARTICLE EFFECTS AND
SCRIPTS

CHAPTER 5 - PARTICLE EFFECTS AND SCRIPTS

3DS Max insert point Gmax insert point

UTC Content Creation Procedures January 2003 61

UTC Content Creation Procedures 61CHAPTER 5 - PARTICLE EFFECTS AND SCTIPTS

ADDING SMOKE TAGS

Smoke blocks are added to an object’s
config.txt file to describe each smoke effect
that will be created on the object. Smoke
blocks are named smoke# (where # is a
number) and are sequentially numbered
starting at 0. See Example 2 for an example.

Smoke blocks have two sections: main and
sequence properties. Main properties describe
the attributes that do not change based on the
mode’s key. Sequence properties describe
a set of one or more phases/periods in the
smoke emission sequence.

A smoke block has the following format:

smoke#
{
 mode time | speed | anim | timeofday
 attachment <name of attachment point>
 color <red>, <green>, <blue>,
 <opacity>
 accel <x>, <y>, <z>
 loop <n>

 start <n> [, <n>] …
 period <n> [, <n>] …
 rate <n> [, <n>] …
 velocity <n> [, <n>] …
 lifetime <n> [, <n>] …
 minsize <n> [, <n>] …
 maxsize <n> [, <n>] …
}

Notation:

Is a number, starting with 0

[] Means optional,

… Indicates a variable number of parameters,

| Means or.

Breakdown:

<name of attachment point>
Is the name of an attachment point in the
model. eg a.smoke, a.steam, a.chimney etc

<red>, <green>, <blue>
Are numbers from 0 to 255 describing the
intensity of that color component.

<opacity>
Is a number from 0 to 255 describing the
effect’s initial opacity / transparency.

<x>, <y>, <z>
Are vector components pointing in the direction
of the sum of all forces affecting this smoke
effect. Essentially, <z> describes gravity, and
<x>, <y> describe the force of wind.

<n>
Is a decimal number.

MAIN PROPERTIES:

mode
Describes the mode or type of this smoke
effect. This affects how start and period are
interpreted. Default is time. In all modes,
period can be set to -1 (default) to imply the
phase is active until the next phase begins.

If set to time, start is a set of time values
in seconds after the creation of this effect’s
parent object when this phase of the effect will
start. period is the duration of time this effect
will remain active. Scenery objects currently
only support time mode.

If set to speed, start is a speed in meters per
second (m/s) and period is not used. (Note: 1
m/s = 3.6 km/hr.) All other sequence attributes
(rate, velocity, lifetime, minsize, maxsize) are
interpolated so there are smooth transitions
between phases. See smoke3 in Example 2
for an example.

If set to anim, start is a value from 0.0 to 1.0
which describes the start time into the object’s
animation cycle. period is a value from 0.0 to
1.0 that describes the duration over which the
effect is active. start + period must not exceed
1.0.

If set to timeofday, start is a value from 0.0 to
1.0 which describes the time of day when this
effect will start. Values range as follow:
0 - midnight, 0.25 - 6am, 0.5 - midday, 0.75
6pm, 1.0 - midnight.

color

UTC Content Creation Procedures January 2003 62

UTC Content Creation Procedures 62CHAPTER 5 - PARTICLE EFFECTS AND SCTIPTS

The color of the smoke effect. eg
‘150,150,150,255’ for dark smoke; ‘255,255,
255,150’ for steam; ‘150,150,255,255’ for
water. Default is ‘255,255,255,255’.

accel
Acceleration. A vector pointing in the direction
of the sum of all forces affecting this smoke
effect. Essentially, <z> describes gravity, and
<x>, <y> describe the force of wind. Default is
0,0,0.

loop
Time in seconds to loop the smoke sequence.
Only valid if mode is set to time.

SEQUENCE PROPERTIES:

The following properties can be set to a single
value or a set of values for multiple phases
of the smoke effect. Please note that phases
must not overlap as only one phase can be
active at any one time. If a property has a set
of values, it must be the same length as start.
If a single value is given then it will be used for
all phases of the effect. See Example 1 for an
example of using multiple phases.

start, period
See mode.

rate
The rate of emission in particles per second
for modes time, speed, and timeofday, or the
number of particles to emit over the animation
period for anim mode. Default is 4.

velocity
The initial speed of emitted smoke particles.
Default is 1.

lifetime
Time in seconds that smoke particles exist for.
Default is 3.

minsize
Start size of smoke particles. Default is 0.

maxsize
End size of smoke particles. Default is 3.

In general, it is better to use a low emission
rate with large particles (ie min/max size) than
using a high emission rate with small particles
to reduce the impact on frame rate. Smoke
effects can be quite stunning but are best used
in moderation.

Try experimenting with the different values
to get a feel of how they affect the smoke
effects. Many different types of effects other
than smoke are possible with only a little
imagination, e.g. waterfalls, mist, toxic green
clouds, fire by using a few effects at the same
position to simulate the smoke and flames etc.

UTC Content Creation Procedures January 2003 63

UTC Content Creation Procedures 63CHAPTER 5 - PARTICLE EFFECTS AND SCTIPTS

EXAMPLE 1
- SMOKE FROM A FACTORY’S CHIMNEY

Using a model of a factory with a chimney, an
attachment point called ‘a.smoke’ is placed at
the top of the chimney with it’s Y axis pointing
up. The factory is then exported as an indexed
mesh (.im file type) to the Trainz\world\custom\
scenery\factory folder and the model’s art
assets are copied to the same location. The
following config.txt file will cause smoke to
come out of the factory’s chimney between
6am and midday and 3pm and 6pm. Please
note the given KUID is invalid and should not
be used in your own custom context.

Config.txt

kuid <KUID:###:#####>
region Custom
kind scenery
type Industrial
light 1

smoke0
{
 attachment a.smoke
 mode timeofday
 color 150,150,150,250
 accel 1,0.3,0

 start 0.25, 0.5
 period 0.25, 0.125
 rate 8
 velocity 3
 lifetime 5
 minsize 0.5
 maxsize 2
}

UTC Content Creation Procedures January 2003 64

UTC Content Creation Procedures 64CHAPTER 5 - PARTICLE EFFECTS AND SCTIPTS

EXAMPLE 2
- STEAM TRAIN

An animated steam train model that requires
four smoke points may be set up as follow:

• Dark smoke from the main chimney stack
that is dependant on the trains velocity
(a.smoke, Y pointing up),

• A constant steam trail from a small safety
pipe on top (a.steam.safety, Y pointing up),

• 2 steam trails on each side of the train
that alternately expel steam keyed to the
animation of the trains wheels (a.steam.l,
a.steam.r, Y pointing outwards).

The model is exported as a progressive
mesh (.pm file type) to ‘Trainz\world\custom\
trains\steam_train\steam_train_body’ folder
and the model’s art assets are copied to
the same location. Please see the custom
content creation guide for more information on
creating your own custom trains. The following
config.txt file in the parent folder will generate
the desired smoke effects. Please note the
given KUID is also invalid and should not be
used in your own context.

For example purposes, the settings of an F7
train have been used.

Config.txt

kuid <KUID:###:#####>
kind traincar
bogey 0
engine 1
name Steam Train
mass 100000

enginespec <KUID:###:#####>
enginesound <KUID:###:#####>
hornsound <KUID:###:#####>
interior <KUID:###:#####>

smoke0
{
 attachment a.steam.l
 mode anim
 color 255,255,255,150

 start 0

 period 0.4
 rate 2
 velocity 1
 lifetime 2
 minsize 0.05
 maxsize 1
}

smoke1
{
 attachment a.steam.r
 mode anim
 color 255,255,255,150

 start 0.5
 period 0.4
 rate 2
 velocity 1
 lifetime 2
 minsize 0.05
 maxsize 1
}

smoke2
{
 attachment a.steam.safety
 mode time
 color 255,255,255,150

 rate 2
 velocity 1
 lifetime 2
 minsize 0.05
 maxsize 1
}

smoke3
{
 attachment a.smoke0
 mode speed
 color 100,100,100,200

 start 0,10,20,30
 rate 3,5,7,9
 velocity 3,4,5,5
 lifetime 4,3,2.5,2
 minsize 0.3
 maxsize 2
}

UTC Content Creation Procedures January 2003 65

UTC Content Creation Procedures 65CHAPTER 5 - PARTICLE EFFECTS AND SCTIPTS

SOUND SCRIPTS

Soundscripts give ambient or directional
sounds to objects. They cannot be used on
track, bridge or spline objects. Wav files should
be located within the same directory as the
config.txt file. Examples as follows:

MOJUNCTION

Config.txt

kuid <KUID:###:#####>
kind mojunction
region Australia
trackside 2
light 1
mode0 lever1
mode1 lever2
soundscript
{
 toggle{
 trigger toggle
 distance 5, 100
 nostartdelay 1
 repeat-delay 1
 sound
 {
 points.wav
 }
 }
}
etc.

PEOPLE CROWD

Config.txt :

kind scenery
region Australia
kuid <KUID:###:#####>
type People

soundscript
{
 daysingle {
 repeat-delay 0
 distance 3,150
 sound
 {
 crowd_1.wav
 }
 }
}
etc.

MAP

Config.txt

kind map
kuid <KUID:###:#####>
soundscript
{
 morning {
 ambient 1
 value-range 1, 0.1
 volume 0.3
 sound {
 ctry_day_1.wav
 }
 }
 night {
 ambient 1
 value-range 0, 0.9
 volume 0.3
 sound {
 night_loop.wav
 }
 }
}
username Britain
workingscale 0
workingunits 0
water <KUID:-1:8009>
region Britain
etc.

THUNDERBOX

Config.txt

kuid <KUID:###:#####>
region Australia
light 1
kind scenery
type Residential

soundscript
{
 dayloop {
 repeat-delay 15,50
 distance 5, 50
 sound
 {
 strain_1.wav
 }
 }
}
etc.

UTC Content Creation Procedures January 2003 66

UTC Content Creation Procedures 66CHAPTER 5 - PARTICLE EFFECTS AND SCTIPTS

Breakdown of Soundscripts:

repeat-delay
1 or 2 numbers (min, max, in sec) time to
delay between the end of the sound playing,
and playing it again randomised between
(min .. max)

default min = 0 default max = min

attachment
attachment point on the object to attach the
sound to.

default: origin of parent object
 (not used for ambient sound)

distance
2 numbers (meters)
 1st number = the distance at which the
 sound is played at 100%

 2nd number = the cut-off distance.
 doesnt affect the volume of the sound
 default: 50m, 150m

sound
list of .wav files to play (randomly picked)

volume
gain of the sound
default 1.0 = 100%

ambient
0 or 1, default 0

Ambient sounds have no 3d “position” and
may be stereo non-ambient (positional)
sounds are positioned on the object and must
be mono

value-range
2 numbers, currently used only for day/night
sound effects.

midnight is 0.5, midday = 0.0 or 1.0

Where the numbers are not the same, this sets
the start and end times for the sound to play.

default 0,0 (off)

trigger
Currently used only for levers. the sound
doesnt play until the trigger message happens

nostartdelay
0 or 1, default 0
If not set, the sound will have a short delay
before playing, this stops flanging.
(flanging = really nasty sound caused when
several copies of the same sound are played
at once)

dayloop, daysingle, morning, night, toggle
These have no function in Trainz and have
only been put in for user reference.
Note: Single word only. Do not use a space.

UTC Content Creation Procedures January 2003 67

UTC Content Creation Procedures 67CHAPTER 5 - PARTICLE EFFECTS AND SCTIPTS

TRAINZSCRIPT TUTORIAL

Introduction

Welcome to the first TrainzScript tutorial.

TrainzScript is the scripting language developed
for Auran Trainz. This document will teach you
how to create a very simple scenario - it does not
aim to teach you how to program, or teach you
programming concepts. TrainzScript may be used
from Version 1 Service Pack 3 onward to create
scenario content.

If you do not understand programming concepts,
you may need to read further tutorials before trying
to create Scenarios for Trainz. We will be releasing
a user-friendly interface for compiling powerful
scripts in a later version.

Please take the time to follow the steps of this
document from start to finish. The tutorial is
presented in an informal (non text book) manner.
More help can be found by visiting the Scenarios
forum at http://www.auran.com/trainz/forum/
default.htm

Where do I find TrainzScript

TrainzScript is a scripting language used to drive
the scenarios. Each scenario will have one or
more TrainzScript files (.gs) located in its directory
in the World\Custom\Scenarios folder. The
supporting TrainzScript files are found in the
\Scripts folder. The script files in this folder give
you all of the supported functions required to
control Trainz. Over time, you will learn most of the
functions provided in these files. The TrainzScript
compiler (gsc.exe) is located in the \Bin folder.

Go to the bin folder in your dos prompt, and run the
compiler with the –d flag as follows.

gsc –d > reference.txt

This will copy the TrainzScript documentation to
the file reference.txt. Consult this document as a
reference manual for the TrainzScript language.

Creating A Scenario

Lets create our very first scenario. This will teach
you how to use the TrainzScript compiler and guide
you through the process required to make a simple
scenario that just loads a map.

1. Launch Trainz, and create a new map
in Surveyor. Lay a small track loop,
and place a track mark named “START”
somewhere on your track. Make
sure you name the track mark using
UPPERCASE, as all named object in
TrainzScript are case-sensitive. Place
a lever somewhere on the track so
we have something for the camera to
focus on. Save your map and call it
“Tutorial1”.

2. Before exiting out of Surveyor, select
the “Export Scenario TSO” from
the Trainz Main Menu, and type in
“Tutorial1”.

3. Quit out of Trainz go to your Trainz\
World folder. Locate the config.txt file
in the folder World\Custom\Maps\
Tutorial1.

4. Open the config.txt file of your
Tutorial1map. It should look something
like the following.

kuid <KUID:-2:2023211879>

kind map

username Tutorial1

workingscale 0

workingunits 0

water <KUID:-1:110015>

region Australia

Note the KUID for your new layout. In this case, it
is -2:2023211879.

UTC Content Creation Procedures January 2003 68

UTC Content Creation Procedures 68CHAPTER 5 - PARTICLE EFFECTS AND SCTIPTS

5. Now go to the World\Custom\
Scenarios\Tutorial1\ folder and open
the config.txt file of your Tutorial1
Scenario. It should look something like
the following.

kind activity

username Tutorial1

scriptlibrary Tutorial1

scriptclass MyTutorial1

kuid <KUID:-2:2023211880>

kuid-table {

tutorial1 <KUID:-2:2023211879>

}

description “Tutorial1”

A few notes on this. The kuid-table is a name-
KUID translation table used by the scenario. All
objects loaded by the scenario must be entered in
this table. The scenario will reference the KUID
by name, which is case-sensitive. For example,
when the script loads the map, it will reference it
by the name “Tutorial1”, which will be looked up in
the kuid-table, and found as KUID -2:2023211879.
Trains and rolling stock etc are referenced in
the same manner. You will also notice that the
scenario has its own unique KUID. The description
text is displayed in the scenario selection screen.

6. Next, we will begin editing the
TrainzScript file. Open the Tutorial1.gs
file with your desired programming
editor. This file is created from the
template.gst in the scripts\ folder when
you export the TSO. The syntax of
the following script is explained in the
compiler documentation, but if you
have a read through it, it is pretty self-
explanatory. The file looks like this.

include “trainz.gs”

//

// class MyTutorial1

// brief This is the scenario class. Modify this
class with

// your own gameplay.

//

game class MyTutorial1 isclass Scenario

{

 Train myConsist;

 bool scenarioDone = false;

 //

 // Load will be called by Trainz to load the
scenario map, and when the user presses Ctrl-L

 // param data is the save game data if loading a
saved game.

 //

 bool Load(string data)

 {

 if(data and data.size())

 {

 Interface.Load(data);

 }

 // load the map

 if(!World.LoadMap(World.FindKUID(“Tutorial1”)))

 {

 Interface.Log(“Error loading scenario map”);

 return false;

 }

 return true;

 }

 //

 // Save will be called by Trainz when the user
presses Ctrl-S.

 // return the save game string, such that load
will be able to restor the save game

 // from the last save check point.

 //

 string Save()

 {

 return Interface.Save();

 }

 //

 // TrainDerailed will be called by Trainz when a
train derails

 //

 void TrainDerailed(int trainId)

 {

 if(!scenarioDone)

 {

 World.EndScenario(10);

 scenarioDone = true;

 }

 }

UTC Content Creation Procedures January 2003 69

UTC Content Creation Procedures 69CHAPTER 5 - PARTICLE EFFECTS AND SCTIPTS

 //

 // TrainCollided will be called by Trainz when a
train collides

 //

 void TrainCollided(int trainId)

 {

 if(!scenarioDone)

 {

 World.EndScenario(10);

 scenarioDone = true;

 }

 }

 //

 // TrainSpeedingFine() is called by Trainz every
second your trains speed exceeds the floating limit

 //

 void TrainSpeedingFine()

 {

 //Interface.AdjustScore(-10);

 }

 //

 // TrainBadCouple() is called by Trainz when
vehicles couple greater than 8KPH.

 //

 void TrainBadCouple(int vehicleId)

 {

 //Interface.AdjustScore(-200);

 }

 //

 //

 // main thread

 // brief main is executed automatically after
Load() is called. edit

 // main to contain your scenarios gameplay.

 //

 //

 thread void main(void)

 {

 // Start the monitor thread to monitor speeding,
derailing etc.

 Monitor();

 //

 // create consist specs

 //

 //

 // create consists

 //

 //

 // gameplay

 //

 scenarioDone = true;

 }

};

7. The final step is to compile the
scenario. Copy the makescript.bat
file from Scripts\Docs folder into your
World\Custom\Scenarios\Tutorial1
folder. Run this batch file and make
sure no errors are reported (consult the
forum for assistance). Notice that this
batch file uses the TrainzScript compiler
(gsc) to create the Tutorial1.gsl file.

8. You are now ready to launch your very
first scenario. The scenario should load
your Tutorial1 map. You will notice that
the camera is focused on the junction
we placed on the map. Had we not
placed that junction, the map would not
be visible, as Trainz has nowhere to
focus the camera.

You have now successfully created your very first
scenario. Study the Highland Valley scenarios
and the script .gs files for further TrainzScript
information. Scripting questions may also be
asked on the forums.

Good luck, and we hope you will enjoy your
scripting efforts

